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1. 

As an example of the application of Rayleigh’s method to find the natural frequency of
vibrating systems, Timoshenko et al. [1, p. 38, 39] consider a simply-supported beam of
uniform cross-section loaded at position x= a, with a block of weight W (see Figure 1).
The static deflection for a light beam carrying a concentrated mass was used in reference
[1], rather than the static deflection for a beam with a uniformly distributed load and a
concentrated mass. If the distributed load is greater than the concentrated mass, it is
advisable to assume the static deflection curve for the beam with a uniformly distributed
load for the fundamental mode shape [2, section 3.2]. In fact, Timoshenko’s example [1]
uses the strength-of-materials closed solution, y=Wb/(6lEI)[x3 − (l2 − b2)x], to which the
sine series converges [3, section 2.7.]. Chai and Low [4] confirm that a 100 term series is
equivalent to the strength-of-materials expression.

Rayleigh’s principle states that a reasonable mode shape satisfies at least the slope and
deflection conditions at the ends; it leads to a good approximation for the natural
frequency [1, 2]. The accuracy of Rayleigh’s method depends on how closely one can
predict the dynamic deflection curve. The static deflection curve is often used to
approximate the dynamic deflection for the fundamental mode. James et al. [5, example
2-9] apply Rayleigh’s energy method to determine the frequency of clamped-clamped
centrally loaded beam by using the static-deflection curve, y=P(3lx2 −4x3)/(48EI), and
a trigonometric function, y=A[1−cos (2px/l)]. A more detailed comparison was
summarized in Table 2.2 of reference [3], in which six deflection functions were used for
w(x) for a fixed-ended beam under a load at the center. Also given was the deflection
coefficient K in the formula wmax =Pl3/(KEI) [3].

In the present work, four assumed deflection curves are used, one at a time, to obtain
the kinetic and potential energies of a simply-supported beam. Their effect on the natural
frequency of the vibrating beams under an off-center load is investigated.

2.      

Since the potential energy U equals the work done during beam bending, one has

U= 1
2 gMb du= 1

2 g EI0d2y
dx21

2

dx, (1)
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in which Mb is the bending moment, u the bending angle, EI and y the flexural rigidity
and lateral deflection of the beam, respectively. Equation (1) gives Umax if the deflection
y is the amplitude of the assumed deflection curve.

The maximum kinetic energy of the system, which includes that of the beam (m) and
the rigid mass (M), is

T= 1
2 g ẏ2 dm+ 1

2Mẏ2=x= a . (2)

After equating Tmax and Umax , the square of the fundamental natural frequency of the beam
is given by

v2 =EI g 0d2y
dx21

2

dx>$g ẏ2 dm+Mẏ2=x= a%. (3)

Note that ẏ=vy.
As mentioned in the introduction, the accuracy of Rayleigh’s method depends on how

closely one can predict the deflection curve, y(x). In this work, each of the following four
shape functions is incorporated into the energy terms, equations (1) and (2), to obtain the
system frequency in equation (3):

yW1 =Wbj/(6lEI)[a(l+ b)− j2], for 0E jE a; (4a)

yW2 =Wah/(6lEI)[b(l+ a)− h2], for 0E hE b; (4b)

ym =wx/(24EI)(x3 −2lx2 + l3), for 0E xE l; (5)

yt = ym + yW , for 0E xE l; ys =A sin p(x/l), for 0E xE l. (6, 7)

Note that yW1 and yW2 are the deflection curves defined from the left and right ends,
respectively. They are static-deflection curves considering the load (W) only. On the other
hand, the deflection curve ym is defined in terms of the distributed beam mass (m) only,
while yt considers both the distributed mass and the load. Note that yW represents the terms
of yW1 or yW2 in its respective range. A sine function (ys ) is defined in equation (7), where
parameter A refers to both the displacement of the beam at x= a and the displacement
owing to the load.

It is worth mentioning that the deflection curve (for example, yW ) may not account for
both the beam and the load, even though the terms of M and m are always included in
equation (2) for the kinetic energy.

Figure 1. A loaded beam with simply-supported ends.



0.5

1.4

ζ

f W
/f

0

1.0

0.6

0.2

0.1 0.2 0.3 0.40.0

0.5

1.0

ζ

f m
/f

0 
or

 f
s/

f 0

0.8

0.6

0.2

0.1 0.2 0.3 0.40.0

0.4

   136

Figure 2. Frequency ratio obtained by using yW : —q—, Mr =0·001; —e—, Mr=1; —×—, Mr =10;
—, Mr =100.

3.   

To study the effect of different shape functions on the system natural frequency of
the loaded beam shown in Figure 1, let fW , fm , ft and fs be defined as the associated
frequency obtained from equation (3) by using yW , ym , yt and ys , respectively. In fact, the
frequency fW is equivalent to the expression given in reference [1], f=(1/2p)z3lEIg/
{[W+w(aa+ bb)]a2b2}.

Figure 2 gives the frequency ratio ( fW /f0) as the load is located along the beam’s position,
z= x/l, where f0 is the frequency of the unloaded beam obtained by using ym . Only results
for a half of the beam (0E zE 0·5) need to be plotted by virtue of the symmetrical
boundary ends. One would expect that the frequency ratio ( f/f0) is less than one as a mass
is placed on the beam. Also, the frequency ratio should be unchanged (i.e., f/f0 =1) if the
mass is placed at the beam’s ends.

Four curves with different mass ratios (Mr =M/m) are shown in Figure 2 to illustrate
the effect of the load’s mass on the system frequency. Another set of curves with ym , ys

and yt is shown in Figures 3 and 4, respectively. The effect of heavy loads is investigated.
The frequency ratio ( f/fa) is defined and plotted in Figure 5 as a function of the load’s
position. Note that fa is the frequency with Mr =100 for y= yW .

Figure 3. Frequency ratio obtained by using ym and ys . Key as in Figure 2.
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Figure 4. Frequency ratio obtained by using yt . Key as in Figure 2.

In view of Figures 2–5, the following points can be made:

(1) The system frequency decreases as the mass of the load increases, while it increases
as the load is moved away from the beam’s center. (2) As shown in Figure 2, the expression
by Timoshenko et al. [1] is only applicable to a beam system with heavy loads. The
frequency ratio ( fW /f0) is greater than one with a zero or large mass placed at the ends.
Results using other shape functions show a factor of one for such a trivial case. In fact,
the frequency ratio with yW is greater than one if the load is placed near the ends. (3) The
curves using trigonometric functions (ys ) are almost identical to those using a distributed
function (ym ), as can be seen in Figures 3 and 5. (4) The curves obtained by the total
deflection yt are similar to those obtained by ym , except for cases with a load near the ends.
As can be seen in Figure 4, the frequency ratio ( ft /f0) is greater than one for a large mass
near the ends. This is due to the predominant contribution from the load W on yt . (5)
As shown in Figure 5, the frequency ratio ( ft /fa) quickly converges to unity, whereas the
other two curves ( fm /fa and fs /fa) approach one at the center after they rise above one.
(6) In all the cases, the frequency ratios using various shape functions are identical if the
load is placed at the beam’s center, z=0·5. (7) It is apparent that the curves (yt ) that
consider both the beam and the load give the best results, except when the load is placed
very near the ends.

Figure 5. Frequency ratio for heavy mass (Mr =100): —, fs/fa; – – –, fm/fa; —×—, ft/fa.



   138



This work was conducted during the first author’s sabbatical leave at the University of
Waterloo. The approval of the leave arrangements by Nanyang Technological University
and the University of Waterloo is greatly appreciated.



1. S. P. T, D. H. Y and W. W, J. 1974 Vibration Problems in Engineering.
New York: John Wiley; fourth edition.

2. G. B. W 1964 The Dynamical Behaviour of Structures. Oxford: Pergamon Press.
3. L. H. D 1976 Beams, Plates and Shells. New York: McGraw-Hill.
4. G. B. C and K. H. L 1993 Journal of Sound and Vibration 160, 161–166. On the natural

frequencies of beams carrying a concentrated mass.
5. M. L. J, G. M. S, J. C. W and P. W. W 1994 Vibration of Mechanical and

Structural Systems: with Microcomputer Applications. New York: Harper Collins.


